Thursday, April 6, 2023

Coloration of Spiders

Only three classes of pigment (ommochromes, bilins and guanine) have been identified in spiders, although other pigments have been detected but not yet characterized. Melanins, carotenoids and pterins, very common in other animals, are apparently absent. In some species, the exocuticle of the legs and prosoma is modified by a tanning process, resulting in a brown coloration. Bilins are found, for example, in Micrommata virescens, resulting in its green color. Guanine is responsible for the white markings of the European garden spider Araneus diadematus. It is in many species accumulated in specialized cells called guanocytes. In genera such as Tetragnatha, Leucauge, Argyrodes or Theridiosoma, guanine creates their silvery appearance. While guanine is originally an end-product of protein metabolism, its excretion can be blocked in spiders, leading to an increase in its storage. Structural colors occur in some species, which are the result of the diffraction, scattering or interference of light, for example by modified setae or scales. The white prosoma of Argiope results from bristles reflecting the light, Lycosa and Josa both have areas of modified cuticle that act as light reflectors. The peacock spiders of Australia (genus Maratus) are notable for their bright structural colours in the males.

While in many spiders color is fixed throughout their lifespan, in some groups, color may be variable in response to environmental and internal conditions. Choice of prey may be able to alter the color of spiders. For example, the abdomen of Theridion grallator will become orange if the spider ingests certain species of Diptera and adult Lepidoptera, but if it consumes Homoptera or larval Lepidoptera, then the abdomen becomes green. Environmentally induced color changes may be morphological (occurring over several days) or physiological (occurring near instantly). Morphological changes require pigment synthesis and degradation. In contrast to this, physiological changes occur by changing the position of pigment-containing cells. An example of morphological color changes is background matching. Misumena vatia for instance can change its body color to match the substrate it lives on which makes it more difficult to be detected by prey. An example of physiological color change is observed in Cyrtophora cicatrosa, which can change its body color from white to brown near instantly.

Read more, here.

707-451-3985
21D Commerce Place
Vacaville, CA 95687

No comments:

Post a Comment